Extendable jaws are a recent development


When it comes to catching elusive prey, many fish rely on protruding jaws that quickly extend their reach to snap up that next meal, but evidence suggests that this jaw protrusion skill in fish is relatively new, appearing only in the last 100 million years of their 400-million-year history.

"We take it for granted that all fish can snap up elusive prey," says David Bellwood from the ARC Centre of Excellence for Coral Reef Studies at James Cook University. "But it wasn’t like that millions of years ago."
Based on a careful analysis of the jaws of 60 living fish species, the researchers developed a method to predict a fish’s jaw protrusion ability based on a simple anatomical measurement. It was suddenly possible to predict jaw protrusion in long-lost fish of the ancient past.
"We knew that most [modern] fishes could protrude their jaws," explains Christopher Goatley, co-author of the study, also at James Cook University. "The question was, when did this ability arise, and what anatomical features were required for protrusion?"
The researchers discovered that "one simple measurement of one jawbone explained almost everything. With this we could predict how fish feed today and how they are likely to have fed in the past, over the last 400 million years."
Once protruding jaws did arise, they took off. The researchers’ analyses show an increase in both the average and maximum jaw protrusion over the last 100 million years, making fish more venerable predators over time. At first, the increase in jaw protrusion mostly came from an increase in the proportion of fish with that ability, as spiny-rayed fish won out over other groups. Then the extent of jaw protrusion in those spiny-rayed fish continued to increase.
The findings suggest that this characteristic may have played an important role in the success of the spiny-rayed fishes — now the dominant fish clade in modern oceans, the researchers say. Those extendable, protruding jaws also made prey species more vulnerable to attack. That might explain why many crustaceans today are so small.
"We think [that] over evolutionary time this drove prey to hide by becoming smaller, nocturnal, or hiding in holes," Bellwood says. "Today the average crustacean on a coral reef is less than a millimetre long. This may be a consequence of increasing predation pressure."
Bellwood says this is just the beginning of an in-depth look into fish feeding and the dynamics between fish and their prey in a changing environment.
"There have been major changes in the abilities of fish to feed over time," Bellwood says. "The key to understanding this history is in the workings of a fish’s head."
 
Why not take out a subscription to Practical Fishkeeping magazine? See our latest subscription offer. 
 
Don't forget PFK is also available in digital format. 
Click here for more information on the iPad or iPhone version.
Alternatively, click here for details of the Android version.